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Heat transfer to a spheroidal drop of a dielectric fluid suspended in another dielectric fluid 
in the presence of an electric field is investigated in this paper. The effect of drop 
deformation on the heat transport is analyzed. A range of prescribed drop deformations 
from b/a=O.99 to b/a=O.4 is considered. The electric potential distribution is numerically 
obtained for each deformed drop configuration. The resulting flow field is determined by 
the solution of the Navier-Stokes equations in the continuous and the dispersed phase. 
The transient heat transfer is studied in the limit of bulk of the resistance to the heat 
transport being in the droplet. An alternating-direction-implicit (ADI) method is used to 
obtain the transient temperature field for drop Peclet number from 5 to 1500. In the 
limiting case of negligible drop deformation, we recover the flow field and the electrically 
induced interfacial stresses for a liquid sphere calculated by analytical methods. Heat 
transfer results for a spherical drop (b/a=O.99) show excellent agreement with results 
available in the published literature. Study of drop deformation reveals interesting features 
in the flow and heat transport. The location of the maximum surface velocity moves toward 
the equatorial plane for a deformed drop compared to that for a liquid sphere. It is found 
that the increase in drop deformation results in higher steady state Nusselt numbers for 
very large as well as very small equivalent Peclet numbers. However, for intermediate 
equivalent drop Peclet numbers, the equivalent steady state Nusselt numbers for a de- 
formed drop may be lower than for a sphere. © 1997 by Elsevier Science Inc. 
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Introduct ion 

Direct-contact heat/mass transfer from liquid drops in a uniform 
electric field has received considerable attention in the context 
of enhancement of heat/mass transport. Taylor (1966) studied 
flow and deformation of a drop of a leaky dielectric fluid sus- 
pended in another fluid. He showed that the interfacial stresses 
caused by the presence of the electric field produce a circulatory 
motion inside the drop. Oliver et al. (1985) analyzed the heat 
transfer to a spherical liquid drop suspended in an electric field. 
They showed that, for large Peclet numbers, the Nusselt number 
for purely electrically driven flow becomes increasingly indepen- 
dent of the Peclet number. The maximum steady-state Nusselt 
number in the limit of itarge Peclet number was shown to be 
around 30. This value is significantly higher than 17.9, the Nus- 
selt number for a drop translating in gravitational field in the 
absence of an electric field (Clift et al. 1978). The exact value of 
the maximum Nusselt number for a suspended drop in a uniform 
electric field is shown to be 29.8 by Oliver and DeWitt (1993). 
Advances made in the analysis of heat/mass transport from 
liquid drops in the presence of an electric field are available in a 
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recent detailed review by Ayyaswamy (1995) and are not dis- 
cussed here for brevity. 

Heretofore, the studies of heat/mass transport from a liquid 
drop in a uniform electric field have considered the drop shape 
to be spherical. For a moving drop, in the absence of electric 
field, the assumption of sphericity is appropriate if the Weber 
number and the Ertvrs numbers are small (Sadhal and Johnson 
1986; Jog et al. 1996). However, for a drop suspended in a 
uniform electric field, drop deformations are possible even for 
small Ertvrs numbers. This is because of the presence of 
nonuniform normal stresses induced by the electric field. Only 
for certain specific combination of the electrotbermophysical 
properties of the dispersed and the continuous phase the drop 
may remain spherical (Taylor 1966). Under these conditions, the 
viscous stresses normal to the drop surface attributable to the 
induced circulatory flow exactly cancel the effect of the normal 
stress variation caused by the electric field. In general, the 
nonuniformity in the normal stress at the drop surface leads to 
deformation of the drop. As a drop deforms, the electric field at 
the drop surface changes, and the electrically induced surface 
stresses are altered (Feng and Scott 1996). This results in a 
change in the flow field in the dispersed and the continuous 
phase. Consequently, deformation of a drop can significantly 
impact the heat transport characteristics. A computational model 
to calculate drop deformations under the influence of electric 
field has been recently reported by Feng and Scott (1996). They 
found that the field strength usually exhibits a turning point 
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when it reaches a critical value. Physically, those turning points 
indicate the stability limits of drops stressed by an electric field. 
No steady solution can be obtained if the externally applied 
electric field is increased beyond the critical field strength. How- 
ever, in some special cases with fluid conductivities closely 
matched, they found that the drop deformations can grow indefi- 
nitely as the electric field strength increases. Therefore, with 
closely matched fluid electrical conductivities very large drop 
deformations are possible without becoming unstable. Feng and 
Scott also found that the deformed drop shapes are very nearly 
spheroidal for moderate drop deformations. In this paper, we 
analyze the effect of drop deformation on the heat transport to a 
drop suspended in uniform electric field. We assume the drop 
shape to be spheroid. A range of deformations from nearly 
spherical (b/a = 0.99) to disc-like (b/a = 0.4) are considered, 
where 2a is the length of the drop major axis and 2b is the drop 
minor axis. The assumption of a spheroid drop shape reduces the 
computational efforts considerably with little loss of accuracy. 
The electric field and the resulting flow field are numerically 
calculated in the continuous and the dispersed phase. The tran- 
sient temperature variation and the Nusselt number variations 
are numerically obtained in the limit of bulk of the resistance to 
the heat transport being in the drop. Results indicate that the 
increase in drop deformation leads to higher heat transport to 
the drop in the limit of very large and very small Peclet numbers. 
However, for moderate equivalent Peclet numbers, the equiva- 
lent Nusselt numbers for a deformed drop are smaller than those 
for a liquid sphere. 

Problem formulation 

Consider a drop of a dielectric liquid suspended in another 
dielectric liquid. Application of a uniform electric field to such a 
system results in development of stresses on the surface of the 
drop. The nonuniform shear stress at the droplet surface results 

in a circulatory motion inside the drop. In general, the nonuni- 
formity in the normal stress at the drop surface leads to deforma- 
tion of the drop. Taylor (1966) showed analytically that for small 
deformations, the deformed drop shape is a spheroid. Numerous 
experimental studies (Allan and Mason 1962; Taylor 1966; Torza 
et al. 1971; Vizika and Saville 1992) have shown that the drop 
shape is very nearly spheroid, even for moderate deformations. 
We have considered the deformed drop shape as a spheroid. This 
simplification allows us to use an orthogonal coordinate system 
that conforms to the drop surface, thereby reducing the compu- 
tational efforts with little loss of accuracy. 

We note that both prolate and oblate drop deformations are 
possible and can be determined by Taylor's discriminating func- 
tion: 

2M+  3 
d~ =S(R  2 + 1 ) -  2 + 3 ( S R -  1) 5M+ 5 (1) 

< 0 indicates oblate deformations; whereas, • > 0 results in 
prolate deformations, qb = 0 corresponds to a spherical drop. For 
most practical situations, it has been shown that prolate defor- 
mations will result when the drop is more conductive than the 
surrounding fluid, and oblate deformations are likely when the 
drop is less conductive than the surrounding fluid (Feng and 
Scott 1996). In situations involving heat/mass transport en- 
hanced by application of electric field, it is found that significant 
enhancement is possible by keeping the ratio of the resistivity of 
the continuous phase to the resistivity of the drop phase as low 
as possible (Chang and Berg 1983). Therefore, oblate deforma- 
tions of the drop are more likely in heat/mass transfer enhance- 
ment situations. It is also shown by Stewart and Morrison (1979) 
that inertial forces tend to produce oblate deformations for a 
moving drop. In view of the above considerations, we have 
considered oblate drop deformations in this paper. However, the 
model formulated here can also be applied to a prolate drop. 

Notation 

a 

As 
b 
E 
i 
k 
M 
Nu 

P 
Pe 
A 

Nu 
A 

Pe 
Q 
R 
Re 
(r, z, O) 
S 
t 
T 
t l  

U 
V 

W 

Greek 

half of drop major diameter a thermal diffusivity 
drop surface area ~ surface tension 
half of drop minor diameter I~ viscosity 
electric field p density 
unit vector tr electric conductivity 
dielectric constant -r stress 
viscosity ratio (~1/0,2) ~ stream function 
Nusselt number based on drop major diameter, dp Taylor's discriminating function, Equation 1 
Equation 18 (6, "q, d~) oblate spheroidal coordinates 
pressure 
Peclet number based on drop major diameter 

equivalent Nusselt number defined in Equation 21 Subscripts 

equivalent Peclet number defined in Equation 20 
heat flux 0 initial 
electric conductivity ratio (trl/tr 2) 1 continuous phase 
Reynolds number 2 dispersed phase 
cylindrical polar coordinates b bulk 
ratio of dielectric constants (k l /k  z) E electrically induced 
time s surface 

far field temperature 
velocity 
maximum surface velocity 
electric potential Superscript 

volume * dimensional quantities 
vorticity 
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Calculation o f  the  electric field and the  resul t ing f l ew  
field 

We consider a drop of leaky dielectric fluid suspended in another 
dielectric fluid. The dispe1~ed phase is denoted by subscript 2, 
and the continuous phase is denoted by subscript 1. The formula- 
tion is axisymmetric. The electric field is uniform far from the 
drop. The electric field in both the phases can be calculated by 
the Laplace's equation, and the flow 
Navier-Stokes equations. 

V - u *  = o 

1 * * '~ , 
ui "Vui  = - --Vp* + v N " u  i 

Pi 

v-E,.* = o  

where E* = - V V *  and i = 1,2. 

is described by the 

(2) 

(3) 

(4) 

At the interface the following conditions are satisfied (Melcher 
and Taylor 1969) 

n'u* = 0 
u* = u* 

n" ('r~ + "r~ - "r~ ) = % 

v *  = v :  

crln' VVl* = %n" V'V2* (5) 

0 
l 

~= 

~=½~ 
r 

u i 

, /  = ~t=r 
Figure 1 Oblate spheroidal coordinate system 
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Here xe is the electrically induced stress at the drop surface, % 
is the stress due to surface tension, and n is unit vector normal to 
the drop surface. 

The symmetry condition is used along the axis of symmetry 
and far away from the drop we have 

u* ~ 0, p* ~ * V* pg, and ~ E*z (6) 

We use the oblate spheroid coordinates (6,'q, 4) for computa- 
tional convenience. The origin of the coordinate system is at the 
drop center, as shown in Figure 1. The drop surface corresponds 
to ~ = ~=. The oblate spheroid coordinates are related to the 
cylindrical polar coordinates (r, z,0) as (Happel and Brenner 
1965) 

z = c sinh ~ cos -q 

r = c cosh ~ sin -q 

0 = +  (7) 

The governing equations are made dimensionless as follows. 
Velocity is made dimensionless by the maximum surface velocity 
U, and distances are nondimensionalized by a. The stresses and 
pressure are normalized by I*U/a, and the Reynolds number is 
Re = pU2a/ i , .  The electric field is made dimensionless by 
[~L2U/(Eoa)] 1/2. We introduce stream function QJ (nondimen- 
sionalized by Ua 2) so that 

c°sh2 ~a 0t~ 
U{ = -  • 2 x 1/2 --~ " 0'I~ (8) 

( cosh2 6 -- sin ~q) cosn ~; sm "q 

cosh2 6a O0 
u n (9) 

( cOsh2 6 - s i n 2  11) 1/2 cosh 6 sin -q O~ 

and vorticity w (nondimensionalized by U/a) as 

w = V x u (10) 

In this axisymmetric formulation, only the qb component of 
vorticity is nonzero. Therefore, we have w = wi,. The governing 
equations can now be written as 

2 { ~ (c°sh 6 sin ~q ~--~) + ~ (cosh { sin'q-~- / / o - q  \ o~q ! ) 

00 0~, 
= w - tanh  ~ T c o s h  6= + cot 'q-~cosh 6a 

2 ( sin-q cosh6)]  

Re  - c o s h 6  + sinn 

O--~( 1 o~ . )~ ._ .~  ( 0  1 o_~) 
cosh 6 sin ~1 + cosh ~ sin -q 

= ( cosh/6 - sin2 "q) sech3 6,,w 

sin  /=o ~-( [cosh 6 s,n "q-~-) + cosh6 o'ql 

(11) 

(12) 

(13) 
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The boundary conditions are: as t~ ~ 0% u~, u n = 0 and w = 0. 
The interface conditions at 6 = 6a are: 

P'I 
"rE,~n + ..----'r],~n -- "r2,~n = 0 

1~2 

Ul,rl = U2,, q 

u l , ~ = u 2 ,  ~ = 0 

ov~ ~2 ave 
a6 ~ i  o6 

Boundary conditions and initial conditions are: 

dT 
- -  = 0 at aq = 0 ,  "tr 
d'q 

At the interface 

6 = 6 a ,  T = 0  

At 

t = 0 ,  T = I  (17) 

The Nusselt number based on the drop major diameter is 

V 1 = V 2 (14) Nu Q 2a (18) 
A , ( T *  - T ; ) k  

The shear stress can be written as 

1 [[Ou~ sin-q cos-q ] 

"rf~ = (cosh 2 ~ _- sin 2 .q)t/2 [ L 06 + (cosh2 ~ - sin 2 -q) u~] 

+ [ Ou~ sinh 6 cosh 6 1 
L On (cosh2 6 -  sin2 n) un] ) 

XE,~n = (klEI ,nEIA -- k2E2,nE2,~) 

As a consequence of the assumed oblate spheroid shape of 
the drop, the interfacial condition of normal stress balance need 
not be considered further. 

Trans ient  hea t  t rans fe r  

We investigate the transient heat transport in the drop interior 
when the drop is suddenly exposed to a step change in surface 
temperature. We consider that the bulk of the resistance to the 
heat transfer is in the droplet. Therefore, the drop surface 
temperature corresponds to the free-stream temperature. The 
flow field is considered fully developed and steady. The tempera- 
ture in the drop interior can be calculated by the solution of 
energy conservation equation. 

at-- T + u* .VT~ = o t 2 V 2 T ~  (15) 

We define the dimensionless temperature as T = ( T ~ -  
T~* ) / (  T~, 0 -T~*) and dimensionless time as t = ot 2t* / a  2. The 
Peclet number is given by Pe = 2 Ua / a  2. The governing equation 
and the boundary conditions in terms of the dimensionless vari- 
ables can be written as follows. 

( cosh2 6 -- sin2 -q)cosh 6 sin rl aT 

eosh3 6a Ot 

 or, 

o OT 

(16) 

2I~ 1 dT b 

Asa T b dt 
(19) 

Here, Q is the net rate of heat transport to the drop, 1~ is the 
volume of the drop I~ = }wa2b, and A s is the drop surface area 

A s = f : 2 ~ r  cosh 6a sin "q(cosh  2 6a --  sin2 "11) 1/2 d'q 

The dimensionless bulk temperature can be calculated as 

3 1 
/'b 2 sinh 6~ cos h2 6a 

× f0~= f0~T cosh 6 sin ~(cosh 2 ~ - sin 2 "O) d'q d6 

Numerical methodology 

Equations 11-13 and Equation 16 are solved with the appropri- 
ate boundary conditions (Equations 14 and 17) using a finite-dif- 
ference method. All the equations are discretized using central 
differencing. In the drop interior, 61 x 61 node points were used 
and 101 × 61 node points were used in the surrounding fluid. 
The electric field is first calculated for each drop deformation. 
Electric potential is specified in the far field (6 = 6®). The value 
of 6~ is chosen so that the distance between any point on the 
far-field boundary and the drop surface is at least 100a. To study 
the effect of finiteness of the far-field boundary, solution for 
electric potential was obtained for a deformed drop with b / a  = 
0.7 by considering the far-field boundary at 200a. The change in 
the surface potential and surface potential gradients were less 
then 1%. The electric potential in the dispersed and the continu- 
ous phase was obtained by the following iterative procedure. A 
guess value of the electric potential at the drop surface is 
specified to calculate the electric field in the continuous phase. 
The electric potential gradient along the drop surface obtained 
from the solution to the continuous phase is used as a boundary 
condition to solve for the electric potential distribution inside the 
drop. The improved surface potential variation is then used as a 
boundary condition for the solution in the continuous phase. The 
iterations are continued until the variation in the electric poten- 
tial between successive iterations is less than 10 -6 . The govern- 
ing equations for the stream function and vorticity transport 
were solved in both phases by an iterative procedure. Note that 
the maximum value of the tangential velocity at the drop surface 
must be unity by virtue of the nondimensionalization scheme. 
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The solution to the flow field provides the nondimensional 
velocity distribution on the drop surface. The electric field distri- 
bution is then updated so that the maximum dimensionless 
velocity on the drop surface equals unity. Most of the numerical 
calculations were perforrned with R = 0.1, and S = 2. Note that 
for a known drop shape, the particular choice of the R and S 
values affect the magnitude, but do not affect the angular varia- 
tion, of the electrically induced stresses, provided R and S are 
not unity. (R = S = 1 giw~s a trivial solution of zero interracial 
stresses.) For example, for a liquid sphere (b/a = 
1), re, ~/Te.~,m~ = 2 sin ~1 cos ~q, irrespective of the particular 
values of R and S (Taylor 1966). Therefore, a change in R and S 
will change the value of the electric field that corresponds to a 
nondimensional maximum surface velocity of unity, but will not 
affect the dimensionless flow field. Therefore, applicability of the 
results obtained in this study is not limited to the particular 
values of the parameters R and S used in our computations. 

Transient temperature, distributions inside the droplet were 
obtained for Peclet numbers from 5 to 1500. Alternating direc- 
tion implicit method with a tridiagonal algorithm was employed 
to solve the energy equation. The time-step was varied from 
0.00001 for short times to 0.0001 at large t. For a typical run, the 
solution of electric field and the resulting flow field took less 
than 1 hour on a HP 90C~/712/80 workstation. The solution to 
the energy equation required from 10 minutes (high Pe) to 30 
minutes (low Pe). To study the effect of grid refinement, results 
for Pe = 200 and b/a = 0.7 were also obtained with doubling the 
node points in each direction. The change in the Nusselt number 
variation was found to be less than 2%. 

Resul ts  and d iscuss ion  

We have studied the effect of drop deformation on the heat 
transport in a drop suspended in a uniform electric field. A range 
of drop deformations is considered from b/a = 0.99 (approxi- 
mate sphere) to b/a = 0.4 (disk-like). The transient heat trans- 
port is studied in the lianit of bulk of the resistance to heat 
transfer being in the drop. Under this condition, the transport is 
governed by the drop F'eclet number based on. the maximum 
tangential velocity. A range of Peclet numbers from 5 to 1500 is 
considered. The numerical computations are carried out for a 
suspended drop (Pl/P2 := 1). We have used i~l/p, 2 ---1 in our 
computations. For one of the cases (Pc = 200 and b/a = 0.7), the 
calculations were also carried out by varying the viscosity ratio to 
0.1 and 5. The heat transfer results remained essentially un- 
changed. In all of the eadier studies on heat transfer in a 
spherical drop suspended in uniform electric field, the assump- 
tion of Stokes flow (Re << 1) has been used. To make fruitful 
comparisons with the available results, we have used a value of 
drop Reynolds number as 0.1 in our computations. 

The flow field inside and outside the drop is shown in Figures 
2 and 3 for b/a = 0.99 and 0.7, respectively. As expected, the 
streamline distribution is symmetric about the equatorial plane. 
The negative values of the stream function in the upper half of 
the drop interior indicate that the flow in the lower half moves in 
a direction opposite to that of the upper half. The flow on the 
drop surface is from the poles to the equator. With increasing 
drop deformation, the center of each circulatory vortex pattern 
moves toward the equal:orial plane. The radial distance of the 
vortex center from the drop surface is substantially less for a 
drop with b/a = 0.7, as c~ompared to that for a liquid sphere. The 
electrically induced dimensionless surface velocities are shown in 
Figure 4 for three drop deformations. For a liquid sphere b/a = 
0.99, the maximum ve]tocity (magnitude) occurs at ~q = ¢r/4, 
31r/4. As the drop deformation is increased, the location of 
maximum velocity shifts toward the equator. The dotted line 
shows the analytical results of Taylor (1966) for the surface 
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Figure 2 Streamlines in the drop interior for a spherical 
drop (b/a=O.99); R=0.1 ; S =  2, E =  12.4. 

velocity variation for a liquid sphere. It can be seen that our 
results for a sphere are in excellent agreement with the analytical 
solution. 

The transient Nusselt number variation are shown in Figure 5 
for a range of Peclet numbers for a "sphere." The corresponding 
variations of drop bulk temperature are shown in Figure 6. 
Figure 5 is also a comparison of our results with those of Oliver 
et al. (1985) for a liquid sphere. The comparison shows that the 

1.0 

0.0 

-1.5 

-0.5 

-1,0 

0.0 0.5 1.0 1.5 2.0 
Figure 3 Streamlines in the drop interior for a deformed 
drop with b/a=O.7; R-=0.1; S = 2 ,  E=21 .98  
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Figure 4 Nondimensional velocity variation on the drop 
surface; legend: solid lines--calculated results for a sphere; 
dotted line--analytical solution for a liquid sphere; dashed 
lines--results for deformed drops 
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Figure 7 Variation of Nusselt number (based on drop major 
diameter) for a deformed drop with b / a = 0 . 7  
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Figure 5 Nusselt number variation for a sphere (b/a=0.99):  
comparison with results of Oliver et al. (1985). 

transient Nusselt number variations calculated from our model 
match well with the results of Oliver et al. In the limit of 
negligible drop deformation, our results for the surface veloci- 
ties, the flow field, and the heat transport are in excellent 
agreement with those for a sphere. This can be considered to be 
a validation of our computational model. Figure 7 shows the 
transient Nusselt number variation for a deformed drop b /a  = 
0.7. For all Peclet numbers, for short times, conduction is the 
dominant heat transport mechanism, as can be seen from the 
sharp initial drop in the Nusselt number. This is caused by the 
steep temperature gradients near the drop surface. For low 
Peclet numbers, conduction remains to be the dominant mecha- 
nism at all times. For higher Peclet number, the Nusselt number 
decreases for short times, but starts increasing thereafter as the 
cold fluid from the drop interior is brought near the drop surface 
because of the circulatory motion. The Nusselt number oscilla- 
tions are more pronounced for high Peclet numbers. The Nusselt 
number variation eventually attains a steady state. The steady- 
state Nusselt number value increases as the Peclet number is 
increased. The steady-state Nusselt number values become in- 
creasingly independent of the Peclet number for very large 
Peeler numbers. The bulk temperature variation with dimension- 
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0 .4  

0 .2  

Figure 6 Dimensionless 
time for a liquid sphere 
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Figure 8 Temporal variation of dimensionless bulk temper- 
ature for a deformed drop with b / a = 0 . 7  
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less time is shown in Figrtre 8 for b/a  = 0.7. The dimensionless 
bulk temperature decreases rapidly for short times. The bulk 
temperature variations are qualitatively similar to those for a 
liquid sphere. The Nusselt number variation for a drop with 
b/a = 0.4 is shown in Figure 9. The corresponding bulk tempera- 
ture variation is shown in Figure 10. The transient bulk tempera- 
ture variations show that for higher Peclet numbers, the drop 
bulk temperature drops more rapidly than that for lower Peclet 
numbers for all drop deformations. The qualitative behavior of 
the Nusselt number variation is similar to that obtained for a 
liquid sphere (Chung and Oliver 1990). However, for large Peclet 
numbers, the steady-state Nusselt number values are significantly 
higher for a deformed drop than those for a sphere. 

We note that the Peclet number is based on the drop major 
diameter and the maximum surface velocity. Therefore, for a 
deformed drop, the Peclet number will be (a/b)  ]/3 times that for 
a sphere of identical volume and identical maximum surface 
velocity. A better compa]rison of the steady-state Nusselt num- 
bers can be carried out by defining an equivalent Peclet number 
and an equivalent Nussell: number for a deformed drop as 

U2r [ b ~1/3 
Pe °t2 Pe~ a )  (20) 

[ b ~1/3  

 u= Uta (21) 

where r is the radius of a sphere of equal volume as the 
deformed drop, r---a2/3b 1/3. 

Figure 11 shows the variations of equivalent steady-state 
Nusselt numbers with equivalent Peclet numbers. In the limit of 
small equivalent Peclet number, the equivalent Nusselt numbers 
are higher for a deformed drop than those for a liquid sphere. In 
this range of small Pe, conduction is the dominant mechanism of 
heat transport in the drop. Conduction of heat in a deformed 
drop is much faster than that in a sphere because of the smaller 
length scale and greater surface area for a deformed drop. In the 
limit of small b /a ,  heat conduction length scale for a deformed 
drop is b. This is much smaller than a radius of a sphere of 
identical volume r = a2/3b 1/3. Therefore, for small Peclet num- 
bers, the Nusselt numbers for a deformed drop is higher than 
those for a spherical drop. 
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Figure 9 Variation of Nusselt number (based on drop major 
diameter) for a deformed drop with b / a = 0 . 4  
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Figure 10 Temporal variation of dimensionless bulk tem- 
perature for a deformed drop with b/a=O.4 

It is evident from the flow streamlines shown in Figures 2 and 
3 that the center of the vortex for a deformed drop is situated 
near the equator and closer to the drop surface than that for a 
sphere. At moderate Peclet number, the circulatory vortex in a 
deformed drop is, therefore, less effective in bringing the cold 
fluid from drop interior to near the drop surface. Hence, at 
moderate Peclet numbers, it is observed that the Nusselt num- 
bers for a deformed drop are lower than those for a sphere. 

At very large Peclet numbers, convection is the most domi- 
nant transport mechanism and the temperature gradients along 
each stream line diminish quickly. Therefore, after the initial 
transients, the heat transport is mainly in the direction perpen- 
dicular to the streamlines. For a given Peclet number, the resis- 
tance to the heat transport perpendicular to the stream lines will 
be inversely proportional to the distance between the drop sur- 
face and the center of the vortex. This distance is much smaller 
in the case of deformed drop than that for sphere. This results 
in higher Nusselt numbers for deformed drops at high Peclet 
numbers. 
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Figure 11 Variation of equivalent Nusselt number (Nu) with 
equivalent Peclet number (Pe) for deformed drops 
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Conclusions 

We have studied the transient heat  transport in a deformed drop 
suspended in a uniform electric field by numerical methods. The 
governing equation for the electric potential is solved to obtain 
the electrically induced stresses at the drop surface. The result- 
ing flow field is determined by solving a stream funct ion--vort ic-  
ity formulation in the dispersed and the continuous phase. The 
results for the transient temperature distribution and the Nusselt 
number  are obtained in the limit of bulk of the resistance to the 
heat transport being in the drop. Results show that the location 
of maximum surface velocity moves toward the equatorial plane 
with increasing drop deformation. For all drop deformations, the 
steady-state Nusselt numbers become increasingly independent  
of Peclet number  for large Peclet number.  The steady-state 
Nusselt numbers for a deformed drop are higher than that  for 
sphere for very low and very high Peclet numbers. However, for 
intermediate range of Peclet numbers, the steady-state Nusselt 
number  for a deformed drop may be lower than that for a liquid 
sphere. The maximum steady-state Nusselt number  increases as 
the drop deformation is increased. 
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